Viana AS, Nunes Botelho AM, Moustafa AM, Boge CLK, Pires Ferreira AL, da Silva Carvalho MC, Guimarães MA, Costa BSS, de Mattos MC, Maciel SP, Echevarria-Lima J, Narechania A, O'Brien K, Ryan C, Gerber JS, Carvalho BTF, Figueiredo AMS, Planet PJ. Multidrug-Resistant Methicillin-Resistant Staphylococcus aureus Associated with Bacteremia and Monocyte Evasion, Rio de Janeiro, Brazil. Emerg Infect Dis. 2021;27(11):2825-2835.

DOI: 10.3201/eid2711.210097

///

We typed 600 methicillin-resistant Staphylococcus aureus (MRSA) isolates collected in 51 hospitals in the Rio de Janeiro, Brazil, metropolitan area during 2014–2017. We found that multiple new clonal complex (CC) 5 sequence types had replaced previously dominant MRSA lineages in hospitals. Whole-genome analysis of 208 isolates revealed an emerging sublineage of multidrug-resistant MRSA, sequence type 105, staphylococcal cassette chromosome mec II, spa t002, which we designated the Rio de Janeiro (RdJ) clone. Using molecular clock analysis, we hypothesized that this lineage began to expand in the Rio de Janeiro metropolitan area in 2009. Multivariate analysis supported an association between bloodstream infections and the CC5 lineage that includes the RdJ clone. Compared with other closely related isolates, representative isolates of the RdJ clone more effectively evaded immune function related to monocytic cells, as evidenced by decreased phagocytosis rate and increased numbers of viable unphagocytosed (free) bacteria after in vitro exposure to monocytes.

Keywords: Brazil; MRSA; MRSA and other staphylococci; Rio de Janeiro; Staphylococcus aureus; antimicrobial resistance; bacteremia; bacteria; bacterial infection; bloodstream infections; drug resistance; methicillin-resistant Staphylococcus aureus; molecular epidemiology; monocyte evasion; monocytes; multidrug-resistance; phagocytosis; phylogenetics.

Topo